Dopaminergic control of sleep-wake states.

نویسندگان

  • Kafui Dzirasa
  • Sidarta Ribeiro
  • Rui Costa
  • Lucas M Santos
  • Shih-Chieh Lin
  • Andres Grosmark
  • Tatyana D Sotnikova
  • Raul R Gainetdinov
  • Marc G Caron
  • Miguel A L Nicolelis
چکیده

Dopamine depletion is involved in the pathophysiology of Parkinson's disease, whereas hyperdopaminergia may play a fundamental role in generating endophenotypes associated with schizophrenia. Sleep disturbances are known to occur in both schizophrenia and Parkinson's disease, suggesting that dopamine plays a role in regulating the sleep-wake cycle. Here, we show that novelty-exposed hyperdopaminergic mice enter a novel awake state characterized by spectral patterns of hippocampal local field potentials that resemble electrophysiological activity observed during rapid-eye-movement (REM) sleep. Treatment with haloperidol, a D2 dopamine receptor antagonist, reduces this abnormal intrusion of REM-like activity during wakefulness. Conversely, mice acutely depleted of dopamine enter a different novel awake state characterized by spectral patterns of hippocampal local field potentials that resemble electrophysiological activity observed during slow-wave sleep (SWS). This dopamine-depleted state is marked by an apparent suppression of SWS and a complete suppression of REM sleep. Treatment with D2 (but not D1) dopamine receptor agonists recovers REM sleep in these mice. Altogether, these results indicate that dopamine regulates the generation of sleep-wake states. We propose that psychosis and the sleep disturbances experienced by Parkinsonian patients result from dopamine-mediated disturbances of REM sleep.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Acute and Chronic Heat Exposure on Frequency of EEG Components in Different Sleep-Wake State in Young Rats

The recent literatures indicate that central nervous system (CNS) is highly vulnerable to systemic hyperthermia induced by whole body heating on conscious animals. In the present study, cerebral electrical activity or EEG (electroencephalogram) following exposure to high environmental heat has been studied in moving rats. Rats were divided into three group (i) acute heat stress-subjected to a s...

متن کامل

Control of Sleep by Dopaminergic Inputs to the Drosophila Mushroom Body

The Drosophila mushroom body (MB) is an associative learning network that is important for the control of sleep. We have recently identified particular intrinsic MB Kenyon cell (KC) classes that regulate sleep through synaptic activation of particular MB output neurons (MBONs) whose axons convey sleep control signals out of the MB to downstream target regions. Specifically, we found that sleep-...

متن کامل

Dopaminergic modulation of behavioral states in mesopontine tegmentum: a reverse microdialysis study in freely moving cats.

STUDY OBJECTIVES We investigated the role of dopamine (DA) in behavioral state control and, in particular, paradoxical (or rapid eye movement) sleep (PS) generation in mesopontine structures. DESIGN Reverse microdialysis and polygraphic recordings in freely moving cats were used to assess the effects on sleep-wake states of applied DA and monoaminergic agonists and antagonists. SETTINGS NA....

متن کامل

Neurohormonal and neuromodulatory control of sleep in Drosophila.

The fruit fly Drosophila melanogaster has emerged in recent years as a tractable system for studying sleep. The sleep-wake dichotomy represents one of the principal transitions in global brain state, and neurohormones and neuromodulators are well known for their ability to change global brain states. Here, we describe studies of two brain systems that regulate sleep in Drosophila, the neurohorm...

متن کامل

Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter.

Recent evidence suggests that dopamine plays an important role in arousal, but the location of the dopaminergic neurons that may regulate arousal remains unclear. It is sometimes assumed that the dopaminergic neurons in the ventral tegmental area that project to the prefrontal cortex and striatum may regulate the state of arousal; however, the firing of these dopaminergic neurons does not corre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 41  شماره 

صفحات  -

تاریخ انتشار 2006